skip to main content


Search for: All records

Creators/Authors contains: "Wong, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 9, 2024
  2. Abstract

    More frequent and severe droughts are driving increased forest mortality around the globe. We urgently need to describe and predict how drought affects forest carbon cycling and identify thresholds of environmental stress that trigger ecosystem collapse. Quantifying the effects of drought at an ecosystem level is complex because dynamic climate–plant relationships can cause rapid and/or prolonged shifts in carbon balance. We employ the CARbon DAta MOdel fraMework (CARDAMOM) to investigate legacy effects of drought on forest carbon pools and fluxes. Our Bayesian model‐data fusion approach uses tower observed meteorological forcing and carbon fluxes to determine the response and sensitivity of aboveground and belowground ecological processes associated with the 2012–2015 California drought. Our study area is a mid‐montane mixed conifer forest in the Southern Sierras. CARDAMOM constrained with gross primary productivity (GPP) estimates covering 2011–2017 show a ~75% reduction in GPP, compared to negligible GPP change when constrained with 2011 only. Precipitation across 2012–2015 was 45% (474 mm) lower than the historical average and drove a cascading depletion in soil moisture and carbon pools (foliar, labile, roots, and litter). Adding 157 mm during an especially stressful year (2014, annual rainfall = 293 mm) led to a smaller depletion of water and carbon pools, steering the ecosystem away from a state of GPP tipping‐point collapse to recovery. We present novel process‐driven insights that demonstrate the sensitivity of GPP collapse to ecosystem foliar carbon and soil moisture states—showing that the full extent of GPP response takes several years to arise. Thus, long‐term changes in soil moisture and carbon pools can provide a mechanistic link between drought and forest mortality. Our study provides an example for how key precipitation threshold ranges can influence forest productivity, making them useful for monitoring and predicting forest mortality events.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  3. Thermal limitations play a significant role in modern integrated chips (ICs) design and performance. 3D integrated chip (3DIC) makes the thermal problem even worse due to a high density of transistors and heat dissipation bottlenecks within the stack-up. These issues exacerbate the need for quick thermal solutions throughout the design flow. This paper presents a generative approach for modeling the power to heat dissipation for a 3DIC. This approach focuses on a single layer in a stack and shows that, given the power map, the model can generate the resultant heat for the bulk. It shows two approaches, one straightforward approach where the model only uses the power map and the other where it learns the additional parameters through random vectors. The first approach recovers the temperature maps with 1.2 C° or a root-mean-squared error (RMSE) of 0.31 over the images with pixel values ranging from -1 to 1. The second approach performs better, with the RMSE decreasing to 0.082 in a 0 to 1 range. For any result, the model inference takes less than 100 millisecond for any given power map. These results show that the generative approach has speed advantages over traditional solvers while enabling results with reasonable accuracy for 3DIC, opening the door for thermally aware floorplanning. 
    more » « less
    Free, publicly-accessible full text available May 10, 2024
  4. Mobile Augmented Reality (AR), which overlays digital content on the real-world scenes surrounding a user, is bringing immersive interactive experiences where the real and virtual worlds are tightly coupled. To enable seamless and precise AR experiences, an image recognition system that can accurately recognize the object in the camera view with low system latency is required. However, due to the pervasiveness and severity of image distortions, an effective and robust image recognition solution for “in the wild” mobile AR is still elusive. In this article, we present CollabAR, an edge-assisted system that provides distortion-tolerant image recognition for mobile AR with imperceptible system latency. CollabAR incorporates both distortion-tolerant and collaborative image recognition modules in its design. The former enables distortion-adaptive image recognition to improve the robustness against image distortions, while the latter exploits the spatial-temporal correlation among mobile AR users to improve recognition accuracy. Moreover, as it is difficult to collect a large-scale image distortion dataset, we propose a Cycle-Consistent Generative Adversarial Network-based data augmentation method to synthesize realistic image distortion. Our evaluation demonstrates that CollabAR achieves over 85% recognition accuracy for “in the wild” images with severe distortions, while reducing the end-to-end system latency to as low as 18.2 ms. 
    more » « less
  5. null (Ed.)
  6. Abstract

    We review comprehensive observations of electromagnetic ion cyclotron (EMIC) wave-driven energetic electron precipitation using data collected by the energetic electron detector on the Electron Losses and Fields InvestigatioN (ELFIN) mission, two polar-orbiting low-altitude spinning CubeSats, measuring 50-5000 keV electrons with good pitch-angle and energy resolution. EMIC wave-driven precipitation exhibits a distinct signature in energy-spectrograms of the precipitating-to-trapped flux ratio: peaks at >0.5 MeV which are abrupt (bursty) (lasting ∼17 s, or$\Delta L\sim 0.56$ΔL0.56) with significant substructure (occasionally down to sub-second timescale). We attribute the bursty nature of the precipitation to the spatial extent and structuredness of the wave field at the equator. Multiple ELFIN passes over the same MLT sector allow us to study the spatial and temporal evolution of the EMIC wave - electron interaction region. Case studies employing conjugate ground-based or equatorial observations of the EMIC waves reveal that the energy of moderate and strong precipitation at ELFIN approximately agrees with theoretical expectations for cyclotron resonant interactions in a cold plasma. Using multiple years of ELFIN data uniformly distributed in local time, we assemble a statistical database of ∼50 events of strong EMIC wave-driven precipitation. Most reside at$L\sim 5-7$L57at dusk, while a smaller subset exists at$L\sim 8-12$L812at post-midnight. The energies of the peak-precipitation ratio and of the half-peak precipitation ratio (our proxy for the minimum resonance energy) exhibit an$L$L-shell dependence in good agreement with theoretical estimates based on prior statistical observations of EMIC wave power spectra. The precipitation ratio’s spectral shape for the most intense events has an exponential falloff away from the peak (i.e., on either side of$\sim 1.45$1.45MeV). It too agrees well with quasi-linear diffusion theory based on prior statistics of wave spectra. It should be noted though that this diffusive treatment likely includes effects from nonlinear resonant interactions (especially at high energies) and nonresonant effects from sharp wave packet edges (at low energies). Sub-MeV electron precipitation observed concurrently with strong EMIC wave-driven >1 MeV precipitation has a spectral shape that is consistent with efficient pitch-angle scattering down to ∼ 200-300 keV by much less intense higher frequency EMIC waves at dusk (where such waves are most frequent). At ∼100 keV, whistler-mode chorus may be implicated in concurrent precipitation. These results confirm the critical role of EMIC waves in driving relativistic electron losses. Nonlinear effects may abound and require further investigation.

     
    more » « less